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ABSTRACT
Finding an arrangement, leading to a higher heat transfer and lower pressure drop, is crucial in
the design of heat exchangers. Previous studies have primarily focused on regular arrangements
with uniform pitch distances, which lack applicability to general configurations. In this study, we
proposed a new procedure of a flow-learned building block (FLBB) to predict heat transfer in an in-
line cylinder array with random pitch distances using a neural network-based regression analysis
with a systematic data generation process. As a first step, we demonstrated the FLBB’s capabil-
ity to predict the heat transfer and pressure drop in in-line cylinder arrays with random pitch
distances at low Reynolds numbers from 1 to 100 for air (Pr = 0.71). Subsequently, a high-order
FLBB approach was proposed to address the spatial interdependency between neighbouring cylin-
ders, particularly in scenarios where vortex shedding occurs in the wake of cylinders at increased
Reynolds numbers. The high-order FLBB approach was then shown to successfully describe var-
ious flow and temperature patterns using cylinder arrays with random pitch distances. The pro-
posed procedure exhibited remarkable efficiency, requiring only about 1 s. Furthermore, the FLBB
was successfully extended to various flow regimes, even encompassing unseen Reynolds numbers
from 1 to 100.
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Nomenclature

A surface area, m2

c specific heat capacity, J/(kg·K)
Cd drag coefficient
Cf skin-friction coefficient
Cp pressure coefficient
D cylinder diameter, m
h convection heat transfer coefficient,

W/(m2·K)
k thermal conductivity, W/(m·K)
L2 L2 norm error
L∞ infinity norm error
Nu Nusselt number
ṁ mass flow rate, kg/s
p pressure, Pa
�p pressure drop, Pa
�p∗ normalised pressure drop
Pr Prandtl number
Q heat transfer rate, W
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Re Reynolds number
SL longitudinal pitch distance, m
ST transverse pitch distance, m
T temperature, K
�TLMTD logarithmic mean temperature difference, K
t time, s
U bulk velocity, m/s
u horizontal velocity, m/s
u∗ normalised horizontal velocity
v vertical velocity, m/s
v∗ normalised vertical velocity

Greek letters

μ viscosity, Pa·s
ρ density, kg/m3

θ normalised temperature
ω vorticity, 1/s
ω∗ normalised vorticity
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Subscripts

in inlet
out outlet
max maximum

1. Introduction

Heat transfer and fluid flow through cylinder arrays is
a fundamental subject in thermal and fluid engineering
and has direct implications in a wide variety of applica-
tions such as heat exchangers (Colburn, 1993; da Silva
et al., 2018; Ge et al., 2021; Zargartalebi et al., 2020;
Zukauskas & Ulinskas, 1988), particulate filters (Araujo
et al., 2006; Li et al., 2016; Printsypar et al., 2019), gas dif-
fusion layers (Cindrella et al., 2009; Tamayol & Bahrami,
2011; Williams et al., 2004), and packed bed reactors
(Halkarni et al., 2017; Nemec & Levec, 2005; Noorman
et al., 2007). Because the performance of these applica-
tions is determined by the flow characteristics near the
solid surface, the geometric configuration of the cylin-
der array should be designed to induce optimal fluid
flow for each purpose (Gorman et al., 2019; Li et al.,
2016). For example, enhancing convective heat transfer
by inducing local turbulence or vortex flow has long been
a topic of interest for heat exchangers (da Silva et al.,
2018). To date, numerous studies have been conducted to
determine the boundary conditions and optimal geomet-
ric features, such as the pitch distance, in-line/staggered
composition of cylinder arrays, and shape and size of
cylinder, for different applications (Ge et al., 2021; Li
et al., 2016).

Most earlier studies have focused on flows over
arrangements of cylinders of the same size, ranging from
millimetres to metres (Colburn, 1993; da Silva et al.,
2018; Zukauskas & Ulinskas, 1988). The flow regimes
in these studies predominantly fell within the fully tur-
bulent (Dhar et al., 2016, 2017) or transition regions.
In these studies, uniformly arranged in-line and stag-
gered patterns were commonly utilised, characterised
by their longitudinal and transverse pitch distances and
sizes. These parameters have a significant influence on
flow behaviour and heat transfer performance. Addition-
ally, numerous studies have been conducted to identify
the optimised arrangements that can minimise the pres-
sure drop while simultaneously achieving an enhanced
heat-transfer performance. The research outcomes were
utilised to determine correlations between the Nusselt
numberNu (representing the heat transfer performance),
pressure drop (representing the required pump power),
Reynolds number Re, and Prandtl number Pr depending
on the geometric parameters (Colburn, 1993; Grimison,
1937; Zukauskas & Ulinskas, 1988).

Recently, there has been a notable increase in research
focusing on the flow over cylinder arrays at the sub-
micro- and microscale (He & Zhang, 2020; Jiang et al.,
2014; Zargartalebi & Azaiez, 2019; Zargartalebi et al.,
2020). Specifically, studies were conducted on systems
such as microchannel heat sinks (Zargartalebi & Azaiez,
2019; Zargartalebi et al., 2020) andmass separation (He&
Zhang, 2020; Jiang et al., 2014). In these configurations,
low Reynolds-number flows, ranging from the order of
tens to several hundred (He & Zhang, 2020; Zargartalebi
&Azaiez, 2019; Zargartalebi et al., 2020), and even creep-
ing flow (Re � 1) (Chen & Papathanasiou, 2008; He
& Zhang, 2020), were employed. The configurations of
these systems can sometimes become significantly com-
plex owing to the presence of a large number of cylinders
with nonuniform distributions (Chen & Papathanasiou,
2008; He & Zhang, 2020). In the context of designing
optimised structures that aim to reduce the pressure
drop while maintaining higher heat transfer coefficients,
previous research has explored specific geometric con-
figurations by employing different pitch distances, sizes,
and shapes. To attain these desired objectives, researchers
have employed disordered or heterogeneous arrays and
conducted performance comparisons with regular in-
line or staggered arrays (Zargartalebi et al., 2020). These
studies have revealed that well-designed heterogeneous
arrays featuring varying pitch distances or sizes can occa-
sionally outperform homogeneous arrays by enhancing
the heat transfer efficiency. However, these study find-
ings cannot be readily extended to general geometries
depending on the user’s available options. Owing to the
extensive range of cylinders that can be employed in such
systems, the number of potential configurations is virtu-
ally limitless. Consequently, identifying the optimal con-
figuration is impractical. Therefore, establishing a corre-
lation to predict the overall heat transfer and pressure
drop in a given system is crucial for initial system design
assessment. This correlation would streamline the design
process, enabling the efficient exploration of various con-
figurations and the identification of promising designs
without relying solely on resource-intensive experimen-
tal trials. However, most existing correlations for heat
transfer have been limited to homogeneous arrays with
uniform size and pitch. A more general correlation that
can encompass heterogeneous arrays cannot be easily
determined using conventional approaches due to its
case-specific nature. From this research gap, we have
devised a new and innovative tool for addressing fluid
flow and heat transfer over a further general geomet-
ric configuration of cylinder arrays with heterogeneity.
To achieve this research objective to obtain a more gen-
eral correlation,we have incorporated amachine learning
process.
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The recent advances in machine learning (ML) have
provided new perspectives for delivering quantified solu-
tions from vast datasets using computational resources
or experimentalmeasurements.ML approaches have also
been used in the fields of thermal and fluid mechan-
ics (Brunton et al., 2020; Duraisamy et al., 2019; Han
et al., 2022; Jin et al., 2018, 2021; Kutz et al., 2016;
Lee & You, 2019; Ling et al., 2016; Raissi et al., 2017,
2019, 2020; Schmid, 2010; Wang et al., 2017; Wu et al.,
2020; Zhang et al., 2022; Zhou et al., 2019), which have
an inherently nonlinear nature, adding difficulties in
predicting and/or describing the temporal and spatial
evolutions of flow fields. A representative topic in con-
ventional ML is the regression analysis (Acharya et al.,
2019; Chew & Law, 2019; Maulud & Abdulazeez, 2020;
Wang & Sun, 2016; Zhang et al., 2019), which refers
to a method that correlates independent and dependent
variables. Using regression analysis, a large number of
input conditions, which are impossible to correlate with
a theoretical or mathematical model, can be successfully
correlated without any physical support. Owing to the
advancement of the computational fluid dynamics (CFD)
analysis, the available dataset for training has become
sufficiently large; however, it is still limited to target
problems with specific geometric configurations. There-
fore, a systematic procedure with a practically obtainable
data generation process is required to implement a CFD
analysis.

In this study, we introduce a newmethodology to pre-
dict fluid flow and heat transfer over in-line cylinder
arrays including heterogeneity in its pitch distance, using
a neural network-based regression analysis (Acharya
et al., 2019; Chew & Law, 2019; Maulud & Abdulazeez,
2020; Wang & Sun, 2016; Zhang et al., 2019) with a
systematic and automatic data generation method. As a
critical first step for the future design of thermal and
fluid engineering applications with cylinder arrays, the
present work suggests a novel procedure called flow-
learned building block (FLBB) approach. The FLBB dis-
cretizes the whole flow domain into subblocks and learns
all the systematic flow data that are possible in the sub-
blocks. Because a subblock may or may not have cylin-
der, building subblocks in different combinations can
yield possible flow patterns over cylinder arrays with ran-
dom pitch distances. To verify the performance of the
FLBB proposed in this study, we employed low Reynolds
flows over in-line cylinder arrays, which are one of
the most widely used configurations in heat exchang-
ers, and compare the results predicted by the FLBB
to the target data regarding geometric cases and flow
regimes.

2. Methods

2.1. Flow-learned building block

As stated before, there is currently only one case-specific
method to describe fluid flow over heterogeneous arrays,
owing to the nonlinear flow characteristics that change
depending on the geometric configurations (Henderson,
1997). Many nonlinear mechanics problems have been
successfully solved using computational approaches that
linearise them, such as the finite element and finite vol-
ume methods, which discretize the spatial and temporal
domains into linear subunits. In these methods, the min-
imal spatial subunit obtained by discretizing the spatial
domain, which is usually referred to as a computation
mesh or grid, plays an important role in solving nonlinear
mechanical problems.

This discretization of the spatial and temporal domains
into small subunits in various computational approaches
motivated the development of the FLBB. Instead of defin-
ing a subunit as a sufficiently small region for linearisa-
tion, a large building block comprising cylinder arrays
with random pitch distances is considered. The size of
the building block was set as the transverse distance (ST)
between the circular cylinders, as shown in Figure 1(a),
which illustrates the longitudinal heterogeneity of the
cylinder array. Notably, in most cylinder arrays used in
fluid engineering (e.g. heat exchangers), heterogeneity in
the longitudinal direction, rather than in the transverse
direction, is considered much more important because
it causes heterogeneity in the flow direction (Lee et al.,
2013; Li et al., 2016). Therefore, although exploring trans-
verse heterogeneity and arbitrarily shaped cylinders is
one of our long-term goals, in this first study, we focused
on longitudinal heterogeneity. Figure 1(a) shows that lon-
gitudinal heterogeneity is imposed by a building block
that is void of a cylinder. The two types of building blocks
were: void and filled. The void building blocks did not
contain a cylinder, whereas the filled building blocks
did contain a cylinder. Subsequently, numerous sets
of longitudinal heterogeneous arrays were configured
by arbitrarily combining these void and filled building
blocks. The dotted box in Figure 1(a) denotes a hetero-
geneous unit arrangement in the longitudinal direction,
where periodic boundary conditions are applied along
the transverse direction. The definition of an FLBB is a
building block that has learned about the flow patterns
across discretized subblocks in response to geometric
conditions based on the void and filled building blocks.
The flow pattern across subblocks was learned using a
data-based function approximator neural network (NN),
which is suitable for handling various patterns of complex
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Figure 1. Flow-learned building block approach. (a) The heterogeneous flow domain with periodicity along the transverse direction (b)
The basic concept of FLBB is to discretize target flow domain along the flow direction (c) The recursive data generation procedure and
neural network (NN) architecture for the FLBB. (d) Second-order FLBB approach by introducing the subsequent dummy block.

problems (Brunton et al., 2020). After flow pattern learn-
ing, the NN was used to predict the flow distribution at
the right outlet boundary for various flows arriving at the
left inlet boundary of the subsequent block; in this study,
the flow was set to flow from left to right. The predicted
flow pattern at the right outlet boundary of this building
block was then used as an inflow condition at the inlet
boundary of the next building block on the right. In this
sequence, the flow distribution over the entire cylinder
array can be predicted, as shown in Figure 1(b).

To improve the generalisation ability of the NN, which
refers to the predictability of the untrained data obtained
using an ML technique, a wide range of flow patterns
must be included in theNNdataset (Xu&Mannor, 2012).
One of the significant challenges in setting up an NN
dataset is ensure that all possible flow patterns that can
occur in heterogeneous cylinder arrays are included. For
this purpose, a recursive data generation process was
devised, as shown in Figure 1(c). In Figure 1(c), the
dashed circular lines in the black boxes represent void
or filled building blocks. During the first data genera-
tion, or the first layer, an initial uniform fluid flow was
introduced at the left inlet boundary of a training domain
with or without a cylinder (void or filled). The time-
variant data of u(y, t) and v(y, t) at the outlet were then
computed by running a CFD simulation on this training
block using our in-house CFD code, where u and v are

the horizontal and vertical components of the flow veloc-
ity, respectively. y is the vertical coordinate and t is the
time. The pressure drop �p between the inlet and outlet
of a training domain was also collected from the dataset
to further investigate the accuracy of the predicted pres-
sure drop. Along with the flow and pressure drop data,
the temperature distribution of T(y, t), also computed
by our in-house CFD, was trained to test the feasibil-
ity of predicting the heat transfer performance of a heat
exchanger. However, it should be noted that any physi-
cal quantity, except temperature, can be trained using the
current FLBB for additional applications if it is advected
with the fluid flow. In this regard, the scope of use of
the present work should not be limited to heat exchanger
applications. For example, if the particle distributions are
trained, the current procedure can be used to predict the
particle capture performance for filtering applications.

After obtaining the u, v, �p, and T outlet data from
two different types of training blocks, with and without
a cylinder in the first layer, these data were recursively
used as inlet data in the second layer of the data genera-
tion process. Therefore, four different cases (=22) were
trained using the second data generation process. Fol-
lowing this training process, 2n cases can be trained in
the nth layer. In this study, the maximum training data
was set to the eighth layer (28 = 256 cases). The total
number of cases can be obtained up to the N-th layer
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as
N∑

n=1
2n. Considering the dissipative nature of the fluid

flow, which regulates the flow pattern after several layers,
the prediction accuracy can sufficiently converge with a
limited number of layers. In this study, we demonstrated
the prediction performance of up to eight layers. The
main benefit of using the present data generation process
is that, as n increases, all possible flow patterns in het-
erogeneous cylinder arrays can be covered automatically
and systematically. The data generation process does not
require setting up a wide range of geometric configura-
tions in the computational domain, which is a practical
aspect of the proposed procedure.

It should also be noted that the data generated in
the current procedure were free of the effects of arti-
ficial data selection on a specific flow pattern, and the
ML methods are inherently dependent on data quality
(Buda et al., 2018; Estabrooks et al., 2004; He & Gar-
cia, 2009). Therefore, if the data selection is biased, it
is difficult for the ML methods to make bias-free deci-
sions (Buda et al., 2018; Estabrooks et al., 2004; He &
Garcia, 2009). In our FLBB, a large number of down-
stream sets were systematically configured with recursive
training using a given upstream block geometry. Thus,
the amount of training data accumulated in the down-
stream direction will naturally cause a data imbalance.
To address the data imbalance, resampling techniques,
such as oversampling (adding minor data to the orig-
inal dataset) or undersampling (removing the majority
class from the original dataset), have been previously
used (Buda et al., 2018; Estabrooks et al., 2004; He &
Garcia, 2009). To avoid data imbalance, we employed
the oversampling technique by duplicating the upstream
block data to match the maximum amount of training
data.

2.2. High-order flow-learned building block

In the previous section, we introduced the basic con-
cept of the FLBB, which was inspired by the numeri-
cal discretization method. For conventional numerical
techniques, a wide range of numerical schemes can be
adopted to increase the prediction performance by adapt-
ing the flow characteristics or increasing the discretiza-
tion accuracy (Ferziger & Peric, 2002). For example, the
spatial derivative of the advective term in the Navier-
Stokes equation can be resolved by adapting an upwind
scheme that includes the flow characteristics of advec-
tion fromupstream to downstream. Furthermore, a high-
order upwind scheme using more spatial data points can
be utilised to improve the numerical accuracy. In this
regard, we suggested a high-order FLBB that considered
flow characteristics.

In flows over cylinder arrays, dynamic flow effects,
such as vortices, can vary depending on the gap dis-
tance between neighbouring cylinders (Sumner, 2010),
which indicates spatial interdependency with the down-
stream object. Thus, the current one-way method of
simply accumulating prediction results along the down-
stream direction may be insufficient for predicting the
whole flow pattern due to a lack of downstream infor-
mation. Here, we proposed a high-order approach that
instructed building blocks to learn and prepare for possi-
ble downstream scenarios. As shown in Figure 1(d), there
are four ways to combine the building blocks if the sub-
sequent block is included as a dummy block to consider
the downstream effects. In Figure 1(d), the subsequent
dummy block is represented by a block surrounded by
black dotted lines. Subsequently, by placing a cylinder in
the subsequent dummy block, the learning process was
extended to prepare all four scenarios.

This utilisation of a subsequent dummy block was
analogous to the high-order scheme used to solve partial
differential equations in conventional numerical analy-
sis because it computes spatial derivatives using more
data points to improve accuracy. Although more subse-
quent dummy blocks can be implemented to improve the
prediction accuracy, we only considered one subsequent
block, which we called the second-order FLBB approach.

2.3. Numerical formulation

In this study, data ware generated through two-dimens-
ional numerical simulations using in-house code. The
two-dimensional fluid flow and heat transfer over cylin-
der arrays was assumed to be incompressible and single-
phase. The governing equations include mass, momen-
tum, and energy conservation, defined as follows:

∇ · u = 0, (1)

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + μ∇2u, (2)

ρc
(

∂T
∂t

+ u · ∇T
)

= k∇2T, (3)

where u is the fluid velocity, ρ is the fluid density, p is the
pressure,μ is the dynamic viscosity, T is the temperature,
c is the specific heat capacity and k is the fluid conduc-
tivity. Here, the gravitational force was neglected and the
working fluid properties (air, Pr = 0.71) were assumed
constant to simplify the problem. The assumption of
neglecting the change in fluid properties can be valid
for cases with a sufficiently small temperature difference
(Hasan, 2014; Herwig & Mahulikar, 2006; Rastan et al.,
2021; Zargartalebi et al., 2020; Zargartalebi & Azaiez,
2019). For example, for our targeted problemof Re = 100



6 G. CHOI ET AL.

and a cylinder diameter of 100μm, a temperature differ-
ence of 20K would fall within an acceptable range for
considering constant property fields (Herwig & Mahu-
likar, 2006). Thus, the temperature difference between
the inlet and the cylinder wall has been set to 20K. The
change in the fluid property field with larger temperature
difference will be included in the future work to reflect
more realistic heat transfer characteristic.

The governing equations were integrated using Cho-
rin’s projection method (Chorin, 1968), and then the
discrete form of the equation could be written as follows:

un + 1 − un

�t
= 1

ρ
An − 1

ρ
∇p, (4)

where the advection and diffusion terms are represented
by A. The momentum equation could be split into two
parts as:

ũ − un

�t
= 1

ρ
An, (5)

un + 1 − ũ
�t

= − 1
ρ

∇p, (6)

where we introduced the variable ũ, which is the new
fluid velocity when the effect of pressure is ignored. The
first step is to obtain this velocity using Equation (5).
The pressure is then obtained by taking the divergence
of Equation (6) and enforcing to be divergence free. This
led to a Poisson equation for the pressure:

∇ ·
(
1
ρ

∇p
)

= ∇ · ũ
�t

. (7)

The Poisson equation was solved fast by FISHPACK
(Adams et al., 2016) software library. Finally, the updated
velocity field is computed as

un+1 = ũ − �t
ρ

∇p. (8)

The first order forward Euler integration was employed
for the temporal discretization, and the Eulerian finite
difference method on staggered grids (Harlow & Welch,
1965) was employed for spatial discretization of velocity
and pressure. The convective term was computed using
a second-order ENO procedure (Shu & Osher, 1988).
To implement cylindrical solid objects, the Ghost Fluid
Method (GFM) (Tseng & Ferziger, 2003) was used. The
computational nodes were classified into nodes of fluid
or solid. Each node was identified with the distance func-
tion field from the nearest solid. The flow field was solved
with the boundary condition specified at ghost nodes.
The values at ghost nodes were extrapolated to satisfy the
intended boundary condition at the solid object which

is zero for the current study. Please see more detailed
information of GFM procedure in the literature (Tseng
& Ferziger, 2003).

The developed numerical method has been verified
with two benchmark tests of flow over a single cylin-
der (Re = 40), and flow over in-line two tandem cylin-
ders (Re = 100) in the two-dimensional geometry. The
benchmark tests were carried out for Reynolds up to 100
considering the target range of the current study. Outside
this range, the flow may not be two-dimensional since
the first 3D instability might occur at Re = 189 (mode
A) and the second instability at around Re = 259 (mode
B) (Barkley & Henderson, 1996).

Firstly, we performed grid convergence tests for uni-
form flow over a single cylinder which has large amount
of reference data to be compared. The computational
domain size was 32D×16DwhereD represents the diam-
eter of the cylinder. For boundary conditions, free stream
boundary conditions (u = Uin, v = 0) and Neumann
pressure condition were applied at the inlet (left side in
this test), top, and bottom sides. Outflow condition, i.e.
zero normal gradient for velocity and zero pressure, was
applied at the outlet (right side in this test), and no-
slip wall at the surface of circular cylinder, which was
positioned 8D from the inlet. Each pressure coefficient
Cp = Fp/(0.5ρU2

in), and skin-friction coefficient Cf =
Fτ /(0.5ρU2

in) along the cylinder surface (with respect to
angular α) at Re = 40 was measured with CPD (cells per
diameter), and compared with the reference data (Tseng
& Ferziger, 2003) as shown in Figure 2(a). Here, the Fp
and Fτ represent the pressure drag normal to and skin-
friction drag parallel to the surface of the cylinder, respec-
tively. These components contribute to the total drag
force acting on a cylinder. At higher Re number, pres-
sure drag due to vortex shedding can be larger than that
caused by the skin friction drag (Baranyi & Lewis, 2006).
Figure 2(a) shows that the numerical results denoted by
the red circle, blue triangle, and green diamondwere con-
verged with the increasing number of grids (represented
by CPD) for each Cp (left) and Cf (right), and converged
results were close to the reference data denoted by the
black solid line. Based on these results, we employed the
grid resolution of CPD=32, corresponding to 64×64 in
the training domain.

In addition to the flow over a single cylinder, the flow
over in-line tandem two cylinders was simulated to verify
the accuracy of the flowovermultiple solid bodies involv-
ing complex interactions between the wakes, and vortex
streets. The computational domain was 40D×20D with
the same boundary conditions as Figure 2(a) (flow over a
single cylinder). The time-averaged Cp of the upstream
cylinder, denoted by P1 (left) and downstream cylin-
der, denoted by P2 (right) were measured at Re = 100
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Figure 2. Benchmark tests for the code validation. (a) Grid resolution tests for flow over a single cylinder. (b) Measurement of pressure
coefficient CP1 (left) and CP2 (right) in flow over in-line tandem cylinders.

as shown in Figure 2(b), and compared with the refer-
ence data (Sharman et al., 2005) denoted by the black
solid line. The results for each CP1 and CP2 were in good
agreement with the reference data.

2.4. Simulation setup

The computational domain for data generation in the
first-order FLBB is depicted in Figure 3(a) and has
dimensions of 16D×2D. Periodic boundary conditions
were applied to the top and bottom side. At the inlet,
boundary conditions of specific values of u(y,t), v(y,t),
and T(y,t) were imposed. A zero normal gradient for
velocity and zero pressure were applied at the outlet,
while a no-slipwall condition and a constantwall temper-
ature (20K higher than the inlet bulk temperature) were
imposed on the surface of the circular cylinder. Here,
y is the vertical position at the inlet and t is time. The
grid resolution in the training domain, marked by the red
dashed box in Figure 3(a), was 64 × 64 (CPD = 32). The
training domain represents the corresponding building
block with or without a cylinder. To prevent the blockage

effect, the longitudinal length Lc was set to 8D, ensuring
the uniform velocity without disturbance by the pres-
ence of cylinder. For correlating the inlet and outlet flow
data in subsequent simulations, Lc was set to D. For the
second-order FLBB, the extended cases of computational
domains were employed to address the geometric config-
uration in the subsequent dummy domain as depicted in
Figure 3(b). The target flow’s computational domain has
dimensions of 32D×2D as depicted in Figure 3(c). The
target domain consists of ten subblocks aligned along the
flow direction.

2.5. Neural network-based regressionmodel

In this section, we introduce the NN architecture to cor-
relate flow data in each inlet and outlet face of the block.
As mentioned previously, state-of-the-art ML techniques
have been developed and implemented successfully for
various engineering problems (Brunton et al., 2020;
Duraisamy et al., 2019). Here, we focused on the devel-
opment of a basic concept and implementation of the
FLBB with a systematic data generation process; thus,
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Figure 3. Simulation setup. (a) The computational domain for data generationof thefirst-order approach. (b) The computational domain
for data generation of the second-order. (c) The computational domain for target flow domains.

a well-known basic structure of the NN was utilised to
describe the correlation between the inlet and outlet data.

NNs are well-known universal function approxima-
tors (Hornik et al., 1989; Jin et al., 2021; Raissi et al.,
2019) that do not infer the correlations between the
input and output variables. We herein took advantage
of NN’s aforementioned capability to predict flow vari-
ables at the outlet (right side face in this study), we used
the NN to predict flow variables at the outlet (right-
side face of a subblock) with given flow variables at the
inlet face. The correlations between the inlet and outlet
flow data for two (first-order FLBB) or four (second-
order FLBB) building blocks, depending on the geo-
metric configuration, were independently learned using
different NNs; thus, we had two or four distinctive func-
tion approximators. NNs with three hidden layers of 193
nodeswere employed, and the rectified linear unit (ReLu)
activation function (Krizhevsky et al., 2012) was imple-
mented in each layer, except the final layer, to ensure
that the output values were unbounded. While the NNs
were trained using datasets, the weight parameters were
updated to minimise the following mean squared error
(MSE):

MSE = 1
N

N∑
i = 1

(Yi − Ỹi)
2, (9)

where Yi and Ỹi denote the target data retrieved from the
numerical simulations and the results predicted by the
NNs, respectively, and N represents the number of data
points. Initially, the weight parameters were randomly
generated according to a normal distribution. To update
the weight parameters, we used the Adam optimiser

(Kingma&Ba, 2014)with a learning rate of 10−3 for 1000
training epochs. The open-source software, Keras (Chol-
let, 2018), was used for training the NN-based regression
model. The NN training took less than 1min based on
eight data layers, and predicting the target flow domain
(10 blocks) using the trained NNs took 1 s (Intel Xeon
Gold 6230 CPU 2.10GHz, 187GBmemory). The simula-
tion for data production took approximately 40min per
case, and the direct computation of the target geometry
took approximately 1.5 h. Because ourmain objectivewas
to develop a systematic data-generation procedure, fur-
ther optimisation is beyond the scope of this study and
will be considered in the future with additional geome-
tries (i.e. staggered) or input conditions.

The training data for u, v, �p, and T were normalised
to u∗ = u/Umax, v∗ = v/Umax, θ = (T − Tin)/(Tw −
Tin), and �p∗ = �p/(ρU2

max). Here,Umax = UinST/(ST
− D) represents the maximum velocity through the
cylinder arrays, which is typically used in conventional
heat exchanger analyses (Incropera et al., 1996), whereD
is the diameter of the cylinder and ST is the transverse
distance between the cylinders, as shown in Figure 1(a).
Tin and Tw represent the bulk temperature at the inlet
of the target block and wall temperature of the cylin-
der, respectively. The magnitude of the bulk temperature
increased across the cylinders (acting as heat sources);
thus, the difference between the bulk and object tem-
peratures (i.e. the driving potential for energy transfer)
decreased. Therefore, scaling the temperature with a uni-
form inlet temperature of the first layer may be inappro-
priate when the energy potential, that is, the difference
between the bulk and object temperatures, decreases. To
address this localised energy potential more adequately,
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we rescaled the temperature to the bulk inlet tempera-
ture of each learning block. The normalised quantities
guaranteed that the training data were of the order of
one. The normalised pressure drop was scaled by the
kinetic energy and drag coefficient because the pressure
loss was not proportional to the kinetic energy alone.
By scaling the kinetic energy and drag coefficient, the
normalised pressure drop remained near unity regard-
less of the Reynolds number. The Reynolds number Re
and scaled inlet flow variables u∗, v∗, and θ along the 64
vertical nodes in the computational domain were utilised
as inputs for the NNs. The scaled outlet flow variables
u∗, v∗, and θ with normalised pressure drop �p∗ were
utilised as outputs for the NNs. The prediction accuracy
was evaluated using L2 and L∞ defined as follows (Lee &
You, 2019):

L2 =
(
1
4

[
1
n

n∑
i

{(u∗
i − ũi)2 + (v∗

i − ṽi)2

+ (θi − θ̃i)
2} + (�p∗ − �p̃)2

]) 1
2

, (10)

L∞ = 1
4

(
max

i
|u∗

i − ũi| + max
i

|v∗
i − ṽi|

+ max
i

|θi − θ̃i| + |�p∗ − �p̃|
)
, (11)

where ũ, ṽ, θ̃ , and �p̃ are normalised data predicted by
the NNs. n denotes the number of grids in the trans-
verse direction. In addition to the L2 evaluation, as in
Equation (11), in each subblock, the arithmetic mean of
L2 over the entire block was also measured to present the
overall prediction performance of the entire array more
intuitively.

3. Results

3.1. First order approach vs. second order approach

To verify the flow prediction capability of the building
block that learned the systematic flow data, we tested
many heterogeneous combinations of cylinder arrays,
and we present a few representative examples in this
paper. By solving these examples, the prediction accu-
racy and robustness of the FLBB were examined with
respect to the number of layers in the training dataset.
Figure 4 shows that the spatial domain is discretized into
ten subblocks and the six circular cylinders are randomly
distributed in this array with different pitch distances
between neighbouring cylinders. Prediction tests were
then performed for different flow regimes with three
different Reynolds numbers (Re = ρUinD/μ) of 1, 10,
and 100, where ρ is the fluid density, Uin is the fluid
velocity at the inlet, and μ is the fluid viscosity. The
Reynolds numbers were selected to cover the various
flow behaviours in terms of vortex formation (Munson
et al., 2013). For small Reynolds numbers ≤ 1, the fluid
flow through a cylinder array was fully laminar with lit-
tle vortex behaviour in the wake of a cylinder. When Re
increased to the order of ten, a vortex appeared in the
wake of the cylinder; however, there was no shedding. If
Re increased further above 100, the vortex separated from
the cylinder and began to shed downstream. To test the
prediction capability of the heat transfer performance, a
fluid was introduced with an initial temperature of Tin
uniformly distributed along the inlet. The walls of the
cylinders were set to maintain constant temperature Tw.

In this section, we use the representative geometric
case of a randomly arranged cylindrical array, as shown
in Figure 4(a), and we explain in detail how the pro-
posed FLBB predicts time-averaged flow data that vary
according to different local cylinder arrangements and

Figure 4. (a) Instantaneous normalised vorticityω∗ contour and (b) normalised temperature θ contour at Re = 100. The output data of
the flow and temperature profiles were obtained at the outlet of each subblock denoted by thick black solid lines.
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Reynolds numbers. In addition to the representative case,
other random structures were tested to verify the predic-
tion performance of the proposed approach, as described
in the following section. Figures 5–7 show the predic-
tion results for the representative geometric case with a
Reynolds number of 100, which is more difficult for flow
prediction than the other Re cases of 1 and 10 because
the vortices remain shedding in the wake of a cylindri-
cal cylinder and co-shedding can also occur depending

on the pitch spacing between neighbouring cylinders at
Re = 100 (Sumner, 2010). Figure 4(a) displays a colour
map of the instantaneous normalised vorticity of ω∗ =
D/Uin(∂v/∂x − ∂u/∂y), which presents a tortuous pat-
tern, indicating that the vortices continue to shed in
the wake of a cylinder. The red colour in the colour
map of the normalised vorticity denotes counterclock-
wise vorticity, whereas the blue colour denotes clockwise
vorticity. In addition, a colour map of the instantaneous

Figure 5. Predictions for vortex sheddingflow (Re = 100) and temperature distributions over an in-line cylinder arraywith randompitch
distances. Predicted data of u∗, v∗, and θ by the first-order approach (blue) and second-order approach (red) are compared to the target
data (black). In the plots, the white and grey backgrounds represent void and filled subblocks, respectively.

Figure 6. Predicted data of Nu (first row) and�p∗ (second row) by the first-order approach (blue) and second-order approach (red) are
compared to the target data (black) at Re = 100.
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normalised temperature of the θ-distribution is shown in
Figure 4(b). Owing to the time-varying cyclic nature of
vortex shedding, u∗, v∗, θ , and �p∗ vary cyclically over
time. This cyclic nature is a unique flow characteristic of
the vortex-shedding flow in comparison to a static flow
without vortex shedding at Re = 1 and 10, which will be
discussed later with the cases in Figures 8–11. The output
data of the flow and temperature profiles were obtained at

the outlet of each subblock denoted by thick black solid
lines.

Here, we compare the predicted results to each first-
and second-order approach to the target data, and dis-
cussed which approach can describe the flow charac-
teristics more properly. A localised comparison of the
outlet profiles of each building block is shown in Figure 5.
The predicted velocity and temperature profiles were

Figure 7. Prediction errors versus the number of data layers: (a) the L2 and (b) L∞ errors.

Figure 8. (a) Instantaneous normalised vorticity ω∗ contour and (b) normalised temperature θ contour at Re = 1 and Re = 10.
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Figure 9. Predicted data of u∗, v∗, and θ by the first-order approach (blue) and second-order approach (red) are compared to the target
data (black) at (a) Re = 1 and (b) Re = 10.

compared to the target profiles. All predicted values were
generated using the largest dataset of eight layers to
obtain the highest accuracy. The graphs in the first rows

of Figure 5 plots the time-averaged and normalised hor-
izontal flow velocities of u∗ (x axis) along the vertical
coordinate of y/ST for every block. The graphs show
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Figure 10. Predicted data of Nu and �p∗ using the first-order approach (blue) and second-order approach (red) are compared to the
target data (black) at (a) Re = 1 and (b) Re = 10.

that the second-order approach (red dashed curves) pro-
vided surprisingly accurate predictions for all the blocks
when compared to the target data (black curves). The
first-order approach (blue dashed curves) also shows rea-
sonable predictive accuracy with regard to the u∗ pre-
diction. For the time-averaged and normalised vertical
flow velocities of v∗, serious prediction errors of the first-
order approach were observed in the 4th, 6th, and 9th
blocks. These errors were particularly serious because the
first-order approach failed to predict not only the flow
magnitude but also the flow direction. The plots shown
in the second row of Figure 5 show the inverted flow
profiles between the first-order predictions and the tar-
get data in the 4th, 6th, and 9th blocks. This contrasts
with the u∗ prediction, for which the first-order approach
was able to describe flow profiles similar to those of

the target profiles; the first-order approach failed to pre-
dict an accurate flow magnitude. Interestingly, the 4th,
6th, and 9th blocks, all of which had severe v∗ predic-
tion errors, shared the same geometric configuration as
the void block, without a cylindrical object connected
to the subsequent block with a cylinder in the down-
stream direction. This is because a flow profile with vor-
tex shedding is subjected to reversal when it passes close
to a cylinder (Meneghini et al., 2001). In other words,
the first-order approach failed to describe flow reversal
near a cylinder, that is, strong interdependency between
objects. Conversely, the second-order approach was able
to accurately describe flow reversal near a cylinder.

Compared to the velocities, the first-order approach
producedmore noticeable errors for the normalised tem-
perature prediction of θ . The graphs in the third row of
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Figure 11. The L2 errors are plotted versus the number of data layers at (a) Re = 1 and (b) Re = 10.

Figure 5 show that the first-order approach fails to predict
both the temperature profile and magnitude in almost
all blocks. The poor prediction performance, particularly
for temperature, was attributed to the increased inter-
dependency of the neighbouring building blocks in the
heat equation. To describe the temperature distribution,
the Navier-Stokes equations should be solved simulta-
neously with the heat equation, which also has strong
interdependency, partly owing to the elliptic nature of
heat diffusion (Meneghini et al., 2001). Consequently, the
first-order approach, which was incapable of addressing
spatial interdependency, had poor temperature predic-
tion capabilities. The elliptic nature of the heat equation
reflects the heat transfer characteristics during conduc-
tion. Conductive heat transfer occurs from a higher to
a lower temperature, which means that it can propagate
even along the direction opposite to the fluid flow. The
surfaces of the cylindrical objects shown in Figure 4(b)
have a higher temperature than the fluid passing around
it because this array is designed to model the most com-
mon engineering problem of cooling down the fluid
flowing inside the cylindrical objects (Bhuiyan & Islam,
2016; Faghri & Zhang, 2006; Gorman et al., 2019; Lee
et al., 2013). In this regard, heat was assumed to be
transferred from a hotter cylinder wall to a colder fluid.
Notably, among all temperature predictions by the first-
order approach, those in the 1st and 7th blocks showed
extremely poor performance. This is due to the locally
slow behaviour of the flow between the cylinders when
the two cylinders were close to each other. As a result,
the conduction effect of the heat source (cylinder) inside

the subsequent block became significant, and the predic-
tion results from the first-order approach, which does
not consider this spatial interdependency, worsened con-
siderably. Accordingly, the predicted heat transfer rate Q
driven by the predicted temperaturewas poorwhenusing
the first-order approach. In contrast, the second-order
approach was found to predict the temperature distribu-
tion significantly well, demonstrating its superior ability
to address spatial interdependency, including conductive
heat transfer.

We also present the Nusselt number Nu = QD/(kA
�TLMTD) derived from the predicted temperature pro-
files and normalised pressure drop �p∗ along the flow
direction in Figure 6, where Q denotes the heat trans-
fer rate ofQ = ṁCp(Tout − Tin) along the flow direction,
A denotes the surface area of the cylinder, k denotes the
thermal conductivity of the fluid, and �TLMTD denotes
the log mean temperature difference. Figure 6 compares
the predicted and target data for Nu and �p∗ at the
inlet and outlet of each block versus the block order.
The results show a very accurate heat transfer across
the randomly distributed cylinders, which is impossi-
ble to obtain from the conventional heat transfer cor-
relation. Both the first- and second-order approaches
provided reasonably accurate predictions of the pres-
sure drop. This is because the pressure drop is primarily
determined by the drag from a cylindrical object, which
is heavily dependent on the velocity profile; therefore,
the type of block (void or filled) has a greater influence
on prediction accuracy than the spatial interdependency
with nearby blocks. However, the second-order approach
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(red-dotted curve) provided a relatively more accurate
prediction, demonstrating its superiority over the first-
order approach.

The prediction performance of the FLBB was further
evaluated by calculating the L2 error for each subblock
with respect to the number of layers of training data from
one to eight, as shown in Figure 7. Here, L2estimates the
prediction error, which is calculated by comparing the
predicted quantities u∗, v∗, θ , and �p∗ by ML to the tar-
get values obtained by computing the entire simulation
domain in Figure 7(a). The plots in Figure 7(a) show that
the prediction error L2generally decreases or converges
with an increasing number of training layers because the
prediction errors decrease as the amount of training data
increases. As shown in Figure 7(a), there is a signifi-
cant difference in the predictive performance between
the first- and second-order approaches. Figure 7(a) shows
that for the first-order approach, the L2error for the 1st
block exceeds 0.1, and from the 3rd block onward, the
error gradually increases, implying that the prediction
error accumulates along the flow direction. The error
accumulation was not relieved, even with an increase
in the training data up to eight layers. Conversely, the
second-order approach shows that, except for the 6th
and 9th blocks, the L2error can be significantly reduced
with only two or more layers. One distinct advantage of
the second-order approach is that the L2 errors can be
successfully reduced using five or more layers, including
the 6th and 9th blocks. This is because the second-order
approach, which was designed to prepare for all possible
scenarios in advance, functions only when a certain level
of data is collected. Amore positive aspect of the second-
order approach is that, unlike the first-order approach,
the L2 error always decreases as the number of data lay-
ers increases, which demonstrates the high robustness of
the present FLBB in terms of prediction capability. As a
result, all blocks achieved the highest level of prediction
accuracy (L2 < 0.05) for the eight layers of training data.
Notably, five layers were acceptable for training, consid-
ering that most of the errors were below 0.1, which was
treated as a fair criterion (Lee & You, 2019; Raissi et al.,
2020). Fewer layers were sufficient for lower Reynolds
numbers (see Figure 11). In addition to L2, L∞ error was
measured to quantify the prediction error caused by the
outlier data generated by the current FLBB. The plots
shown in the second row of Figure 7(b) presents similar
L∞ values to the L2 values in the first row for all blocks for
both the first- and second-order approaches. This implies
that both approaches are stable because they do not create
outliers.

The high prediction performance of the second-order
approach was extended to cases with Reynolds numbers
of 1 and 10 (Figure 8), where the vortex was not shed.

As previously stated, the colour map in the first row of
Figure 8(a) shows that the vorticity is weakly formed in
the wake of the cylinder at Re = 1. Weak vorticities were
only observed near the cylinder because the fluid flow
was assumed to rotate slightly when it passed through the
cylinder. The instantaneous vorticity field ω in the first
row of Figure 8(a) shows that the fluid flow is not tor-
tuous, as shown in Figure 4(a) for Re = 100. Figure 8(b)
depicts the instantaneous normalised temperature con-
tours for Reynolds numbers of 1 and 10. In contrast to
the case of Re = 100, the convective impact of the cold
fluid was very small.

Figure 9(a and b) present the predicted data of u∗,
v∗, and θ of the first- and second-order approaches at
Reynolds numbers of 1 and 10, respectively, compared to
the target data. The results obtained using the second-
order approach closely matched the target data for both
Reynolds numbers. However, the predictions made by
the first-order approach exhibited poor velocity predic-
tion in some blocks. In the first row of Figure 9(a), the
horizontal velocity predicted by the first-order approach
in the 4th, 6th, and 9th blocks shows slight inaccuracies;
however, overall, it demonstrates reasonable predictive
performance. Conversely, the vertical velocity predic-
tions of the first-order approach are very poor, as shown
in the second row. In particular, the results for the 1st,
4th, 6th, 7th, and 9th blocks are particularly inaccurate
because they share the geometric characteristic of being
subsequent blocks filled with a cylinder. This trend was
also observed at the Reynolds number of 10 (Figure 9(b)).
The temperature predictions at Reynolds numbers of 1
and 10 were relatively accurate, with good agreement
between the predicted and target data. In addition, we
compared the predicted Nu and �p∗ using the first-
and second-order approaches at Re = 1 and Re = 10,
as shown in Figure 10(a and b). Our findings demon-
strate that both approaches performed well in approxi-
mating the target data for Nu, which can be attributed to
their accurate prediction of the temperature, as shown in
Figure 9.

The plots in Figure 11(a and b) compare the L2 errors
for the first- and second-order approaches with the num-
ber of training data layers in each block at Re = 1 and
Re = 10, respectively. Unlike the second-order approach,
the first-order approach showed a large difference in the
L2 error between each block. To be more specific, the
first-order approach presented good prediction perfor-
mance for the 2nd, 3rd, 5th, 8th, and 10th blocks, whereas
it had limited prediction capability for the 1st, 4th, 6th,
7th, and 9th blocks. This implies that there are combina-
tions of cylindrical objects and flow conditions that the
first-order approach cannot handlewell. The high predic-
tion errors by the first-order approach did not decrease
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with an increasing number of training data layers up
to eight. This is because the spatial inter-dependency is
not determined simply by the dynamic flow effect. From
a mathematical perspective, it is rather normal for the
spatial interdependency to increase at lower Reynolds
numbers because the elliptic nature of both the Navier-
Stokes and heat equations is inversely proportional to
the Reynolds number (Faghri & Zhang, 2006). Con-
versely, the second-order approach produced accurate
predictions with a low L2<0.02 for all blocks, as shown
in Figure 11, indicating that the second-order approach
can successfully address problems of a higher elliptic
nature at lower Reynolds numbers. We can also see that
the prediction accuracy for these low Reynolds number
flows was practically acceptable (L2 successfully con-
verges to near-zero values) with three layers of training
data.

To compare the prediction performance more intu-
itively, the arithmeticmean of L2 was computed for all the

building blocks. In Figure 12, the mean L2 error is plot-
ted against the number of data layers for three different
Reynolds numbers (1, 10, and 100). The superiority of the
second-order approach over the first-order approach can
be observed more clearly for all three flow regimes. The
most notable feature of the second-order approach was
that themean L2 error consistently decreased as the num-
ber of training data layers increased for all three Reynolds
numbers, whereas the mean L2 error from the first-order
approach remained large. This is an important feature for
ensuring prediction robustness (IEEE Standards Board,
1990; Xu &Mannor, 2012; Zhang et al., 2019). At Re = 1,
as shown in Figure 12, the mean L2 error was observed to
converge quite early from a small number of datasets (the
1st layer) for both the first- (blue) and second-order (red)
approaches. This is because the flow patterns at a small
Reynolds number of unity were described relatively eas-
ily, even with a few datasets, because the dynamic vortex-
solid interaction was limited at this Reynolds number.

Figure 12. Mean L2 errors by the first-order approach (blue) and second-order approach (red) are plotted versus the number of training
data layers at three different Reynolds numbers of 1, 10, and 100.

Figure 13. The four characteristic arrangements of ‘dense to sparse’, ‘sparse to dense’, ‘sparse’, and ‘dense’, which are representative of
practical applications of engineering cylinder arrays, are employed to verify the robustness of the current FLBB approach.
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As the Reynolds number further increased beyond
10–100, the mean L2 error of the first-order approach
increased.

3.2. Further characteristic geometries

In addition to the representative geometries presented
in Figures 4 and 8, other random geometric configura-
tionswere investigated to test the prediction performance
of the current FLBB. Some characteristic geometries
investigated in this study are discussed in this section.
Figure 13 shows four characteristic geometries: dense-to-
sparse (first row), sparse-to-dense (second row), sparse
(third row), and dense (last row). These four geometries
are representative of actual applications of heat exchang-
ers and particulate matter filters that have been used in
practice (Khan et al., 2006; Li et al., 2016; Zargartalebi

et al., 2020). The dense arrangement shown in the last row
of Figure 13, which is themost basic homogeneous geom-
etry among solid engineering arrays, was also included
in this study. Because the present FLBB was designed
to cover all possible geometric configurations, it should
be applicable to heterogeneous arrays and homogeneous
structures.

The predicted Nu, which is a major parameter in
many engineering applications, using the second-order
approach (in red) with eight data layers at Re = 1, Re =
10, and Re = 100, for these four characteristic geome-
tries, was compared to the target data (in black) in Fig-
ures 14–16. For more localised flow data for u∗, v∗, θ ,
and�p∗, please refer to the Supplementarymaterial. The
results in Figures 14–16 indicate that the predicted Nu
values are in close agreement with the target Nu val-
ues for the four characteristic geometries at Re = 1, 10,

Figure 14. Predicted data ofNu obtained using the second-order approach (red) are compared to the target data (black) in four different
cylinder arrays at Re = 1.
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and 100. To compare the overall performance with pre-
vious observations for the representative geometry (see
Figure 12), we calculated the mean L2 error for each
characteristic geometric configuration at Re = 1 (blue),
Re = 10 (red), and Re = 100 (green) in Figure 17. Our
results demonstrate that evenwith a small number of data
layers (e.g. two layers), the mean L2 error converged to
sufficiently small values for Re = 1 and Re = 10. Addi-
tionally, for Re = 100, we observed that increasing the
number of data layers (i.e. approximately five layers)
resulted in excellent performance for all test cases, as
indicated by sufficiently small mean L2 error (< 0.05).
From the results, as previously noted in the last section,
the L2 errors were found to be generally higher for higher
Reynolds numbers, while the second-order approach
demonstrated a robust prediction capability, regardless
of the geometric configuration, by consistently showing

a clear trend of decreasing L2 with an increasing number
of training data layers.

3.3. Generalisation for flow regimes

The prediction capability and robustness of the second-
order approach were found to extend up to flow regimes
with untrained Reynolds numbers whose values were
between the trained Reynolds numbers of 1, 10, and 100.
Except for the addition of the prediction target of the
Reynolds number as an input variable, the training and
prediction procedures for the untrained Reynolds num-
ber were identical to those used previously. Using data
from the trained Reynolds numbers of 1, 10, and 100, the
second-order was used to predict the flow and temper-
ature distributions at four different untrained Reynolds
numbers of 5, 30, 50, and 70. These predictions were

Figure 15. Predicted data ofNu obtained using the second-order approach (red) are compared to the target data (black) in four different
cylinder arrays at Re = 10.
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Figure 16. Predicted data ofNu obtained using the second-order approach (red) are compared to the target data (black) in four different
cylinder arrays at Re = 100.

made for five representative cylinder arrays with irreg-
ular, dense to sparse, sparse to dense, sparse, and dense
configurations, as shown in Figures 4–17. The predic-
tion performance for the untrained Reynolds numbers is
shown in Figure 18, which shows the colour map of the
prediction error of the mean L2 versus the number of the
training data layer (x-axis) and the Reynolds number (y-
axis). The trained Reynolds numbers of 1, 10, and 100
are coloured magenta on the y-axis to distinguish them
from the other untrained Reynolds numbers. Figure 18
shows that the mean L2 errors consistently decrease to
< 0.1 with an increasing number of training data layers
of up to eight for all flow regimes and geometric con-
figurations. This demonstrates the performance of the
present second-order approach in describing the flow
and temperature distributions even for untrained data

regimes, by interpolating the flow and temperature char-
acteristics from the trained data regimes. Among the five
representative array configurations, the dense array was
observed to have the lowest prediction error (darker blue)
because the diversity of the flow patterns was relatively
limited in this geometry. In addition to themean L2 error,
additional prediction results for the untrained Reynolds
numbers are available in the Supplementary material.

4. Conclusions and future work

The design ofwell-optimised cylinder arrays is important
in thermal and fluid engineering applications, includ-
ing heat exchangers. Previous studies examined a limited
range of geometric configurations with constant spac-
ing, and their findings or correlations rarely encompassed
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Figure 17. The mean L2 errors are plotted in four different cylinder arrays at Re = 1 (blue), Re = 10 (red), and Re = 100 (green).

comprehensive general geometries with randomarrange-
ments. In this study, we proposed the FLBB approach
as a novel methodology for the optimal design of cylin-
der arrays with random pitch distances in the field of
thermal and fluid engineering. We conducted a feasibil-
ity study utilising the FLBB to predict the heat transfer
and flow characteristics across an in-line cylinder array of
the same size with random pitch distances for air (Pr =
0.71). This study focused on low Reynolds flow applica-
ble to submicro- to millimetre-scaled applications, such
as microchannel heat sinks and hollow fibre membranes.
We aimed to establish a correlation to predict the overall
heat transfer and pressure drop for such systems, which
can be ideal for the initial system design assessment. This
preliminary analysis also aimed to assess the capability
of the FLBB to accurately capture the thermal and fluid
dynamics behaviour in such configurations.

The FLBB is motivated by the classical computational
cell, also called a mesh or grid, which has been utilised
as a discretizing unit for solving nonlinear mechanical
problems numerically. The correlations between the inlet
and outlet flow data (velocity, temperature, and pres-
sure drop in this study) were devised using NN-based

regression analysis on systematically organised flow data.
Although we obtained impressive results, it is worthwhile
to explore alternative regression techniques, including
support vector regression (SVR), which is a kernel-based
approach (Brunton et al., 2020). Conducting a compara-
tive analysis of the regression performance between the
current NN-based regression, SVR and other techniques
would yield valuable insights. However, because the pri-
mary focus of this study was to introduce the novel
concept of FLBB using a simple NN-based regression
analysis, we did not conduct an exhaustive analysis of
various ML techniques. In the future, we will conduct
more comprehensive analyses. For the systematic gener-
ation of the training data set, a recursive data generation
procedure was proposed where outlet conditions were
recursively used as inlet conditions for the next layer. By
using such a recursive procedure, the bias in data col-
lection can be minimised, and all possible flow patterns
can be covered systematically and effectivelywithout test-
ing an unaffordable number of geometric configurations.
Furthermore, the high-order FLBB was employed to
tackle strong spatial inter-dependency, especially in high
Reynolds number flows where the dynamic vortex-solid
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Figure 18. Predictions for the flow regimes at untrained Reynolds numbers based on the second-order FLBB. Colour maps of the mean
L2 error versus Reynolds number (x-axis) and the number of training data layers (y-axis) for five different characteristic cylinder arrays. On
the y-axis, the numbers in magenta indicate the trained Reynolds number while the numbers in black represent the untrained Reynolds
number to be predicted.

interaction is significant. The prediction robustness of
the second-order approach was superior to that of the
first-order approach, even for untrained flow regimes
when their Reynolds numbers are within the trained
Reynolds numbers.

The proposed FLBB is believed to be valuable as a
novel approach that is directly applicable to engineer-
ing fields. We hope that the proposed general correlation
can replace the conventional correlations that are widely
used for optimal geometry selection (i.e. pitch distance)
of homogeneous array structures. Our procedure enables
the evaluation of local behaviours that are typically unob-
tainable through traditional correlations, which only pro-
vide a global picture of the flow behaviour. This allows
the detection of flow defects at a local level, such as a
high pressure or temperature drop, and thus supports the
development of optimally designed cylinder arrays. The
scope of the current FLBB is expected to be broadened by
including more functions. Importantly, a reinforced ML

model should be embedded in the present FLBB to derive
an optimal structural arrangement for each engineering
purpose (e.g. highest heat transfer performance) rather
than being limited to predicting flow and temperature
distributions through a cylinder array. To derive such an
optimal structural arrangement, a staggered arrangement
of the cylinder array and volume fraction of the cylinder
comparedwith the building box (i.e. the transverse size of
the block) should be included in the FLBB in the future.
Because the purpose of this study was to introduce the
fundamental concept of the FLBB, we only focused on an
in-line cylinder array with a fixed diameter, which is the
most basic configuration of a cylinder array in fluid engi-
neering. Along with the in-line array, a staggered array
is also widely used in heat exchangers, which is known
to provide a higher heat transfer rate than the in-line
array, but is accompanied by an equivalent increase in the
pressure drop as a trade-off (Che & Elbel, 2021; Li et al.,
2016). Thus, in a follow-up study to derive an optimal
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cylinder array through reinforcement learning, a stag-
gered arrangement will be included owing to its effect
on the application performance, such as the heat-transfer
rate and pressure drop. Furthermore, introducing other
shapes such as elliptical and square cylinder with vari-
ance of its angle (Nayak et al., 2019; Yu et al., 2023) can
derive more general shape optimisation. While the cur-
rent research has focused mainly on lower Prandtl num-
bers, specifically airflow, it should be extended to include
higher Prandtl number cases (i.e. water) as well as various
other properties, such as viscosity and thermal diffusiv-
ity. In addition, the solid fraction of a cylinder in a block
and its shape will be considered in the future for further
optimisation.

The proposed FLBB provided accurate predictions
for heterogeneous and homogeneous cylinder arrays
at Reynolds numbers ranging from 1 to 100, includ-
ing untrained Reynolds numbers. For higher Reynolds
numbers, the turbulence should be considered (Gorman
et al., 2019). However, at higher Reynolds numbers >

100, it is somewhat difficult to obtain stable solutions
of the flow and temperature profiles through a cylin-
der array with the present CFD code, which is not spe-
cialised for turbulent modelling (Gorman et al., 2019).
The direct numerical simulation (DNS) or large eddy
simulation (LES) of the turbulent flow can be consid-
ered to obtain an accurate solution for the ML model.
However, because the DNS or LES of the turbulent
flow requires considerable computational resources, the
computation for the second-order approach with eight-
layer dataset, which totals 1,020 different simulations,
will be very expensive. In addition, because the current
FLBB was designed to be computationally efficient, we
focused on the flow regime of Re ≤ 100, where the flow
can be computed precisely without the use of a spe-
cialised turbulent model (Gunzburger, 2012). However,
future work will extend the FLBB to cover turbulent
flow regimes by employing a reliable 3D turbulent model
along with a transient effect for training the building
blocks.
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